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What is a Ramsey Number?

Question: Suppose we colour K, with £ colours, what monochromatic
substructures can we find?
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Ramsey number, R(ki,..., ke) is defined to be the minimum value of n such
that colouring the edges of K, with colours ci, ..., ¢ yields Ky, in colour ¢, or
Ky, in colour o .. ..
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What is a Ramsey Number?

Question: Suppose we colour K, with £ colours, what monochromatic
substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.
Ramsey number, R(ki,..., ke) is defined to be the minimum value of n such
that colouring the edges of K, with colours ci, ..., ¢ yields Ky, in colour ¢, or

Ky, in colour o .. ..

Note - that R(ki, ..., k) exists for all £; ki, ..., ke € N is known as Ramsey’s
Theorem.
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What is a Ramsey Number?

Question: Suppose we colour K, with £ colours, what monochromatic
substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.

Ramsey number, R(ki,..., ke) is defined to be the minimum value of n such
that colouring the edges of K, with colours ci, ..., ¢ yields Ky, in colour ¢, or
Ky, in colour o .. ..

Note - that R(ki, ..., k) exists for all £; ki, ..., ke € N is known as Ramsey’s
Theorem.

Diagonal Ramsey Numbers:

R(t; £) := R(t, t,...,t)
N’

£ copies
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The Ramsey number R(3;2) = R(3,3) i.e., the 2 colour Ramsey number for a
triangle is the smallest non-trivial Ramsey number.
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The Ramsey number R(3;2) = R(3,3) i.e., the 2 colour Ramsey number for a
triangle is the smallest non-trivial Ramsey number.

We shall show that R(3;2) = 6.
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The Ramsey number R(3;2) = R(3,3) i.e., the 2 colour Ramsey number for a
triangle is the smallest non-trivial Ramsey number.

We shall show that R(3;2) = 6.
R(3;2) > 5
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NEREH)

The Ramsey number R(3;2) = R(3,3) i.e., the 2 colour Ramsey number for a
triangle is the smallest non-trivial Ramsey number.

)
N

One of the dashed lines is blue or all
are red.

We shall show that R(3;2) = 6.
R(3;2) > 5
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Erdos’ Lower Bound

Theorem (Erdt’Ss)]

The two colour diagonal Ramsey number satisfies R(t;2) > \/§t
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Erdos’ Lower Bound

Theorem (Erdés)]

The two colour diagonal Ramsey number satisfies R(t;2) > \/§t

Idea: Pick the colouring uniformly at random.

Colour edges red/blue with probability % independently of all others.
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Erdos’ Lower Bound

Theorem (Erd(’Ss)]

The two colour diagonal Ramsey number satisfies R(t;2) > \/§t

Idea: Pick the colouring uniformly at random.

Colour edges red/blue with probability % independently of all others.

The probability that an arbitrary K. is monochromatic is 2 - 2~ ().
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Erdos’ Lower Bound

Theorem (Erd(’Ss)]

The two colour diagonal Ramsey number satisfies R(t;2) > \/§t

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability % independently of all others.
The probability that an arbitrary K. is monochromatic is 2 - 2~ ().

There are (}) copies of K in Kp.
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Erdos’ Lower Bound

Theorem (Erdés)]

The two colour diagonal Ramsey number satisfies R(t;2) > \/ﬁt

Idea: Pick the colouring uniformly at random.

Colour edges red/blue with probability % independently of all others.
The probability that an arbitrary K. is monochromatic is 2 - 2~ ().
There are (}) copies of K in Kp.

t

So the expected number of monochromatic copies of K; is 2(:)2_(;).
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Erdos’ Lower Bound

Theorem (Erdc’Ss)]

The two colour diagonal Ramsey number satisfies R(t;2) > \@t

Idea: Pick the colouring uniformly at random.

Colour edges red/blue with probability % independently of all others.

The probability that an arbitrary K. is monochromatic is 2 - 2~ ().

There are (}) copies of K in Kp.

t

So the expected number of monochromatic copies of K; is 2(:)2_(;).

. . R .
Ignoring lower order terms, this is n2~ 2 which is less than 1 provided

nS\/it.
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Erdos’ Lower Bound

Theorem (Erdc’Ss)]

The two colour diagonal Ramsey number satisfies R(t;2) > V2!

Idea: Pick the colouring uniformly at random.

Colour edges red/blue with probability % independently of all others.

The probability that an arbitrary K. is monochromatic is 2 - 2~ ().

There are (}) copies of K in Kp.

t

So the expected number of monochromatic copies of K; is 2(';)2_(5).

. . R .
Ignoring lower order terms, this is n2~ 2 which is less than 1 provided

ngﬁt.

. . t . .
This allows us to deduce that there is at least one graph on v/2  vertices with
no monochromatic K;.
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Erd6s-Szekeres Upper Bound

Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4
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The two colour diagonal Ramsey number satisfies R(t;2) < 4

Idea: Neighbourhood Chasing.
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The two colour diagonal Ramsey number satisfies R(t;2) < 4

Idea: Neighbourhood Chasing.

We must find a monochromatic K; for each graph of size 4'.
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Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4

Idea: Neighbourhood Chasing.
We must find a monochromatic K; for each graph of size 4'.

Let Gp be the initial coloured K.
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Erd6s-Szekeres Upper Bound

Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4

Idea: Neighbourhood Chasing.
We must find a monochromatic K; for each graph of size 4'.
Let Gy be the initial coloured K.

For i > 1 Let v; be an arbitrary vertex of Gi_1, it has either at least [n/2]
incident red edges or |n/2] incident blue edges.
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Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4

Idea: Neighbourhood Chasing.
We must find a monochromatic K; for each graph of size 4'.
Let Gy be the initial coloured K.

For i > 1 Let v; be an arbitrary vertex of Gi_1, it has either at least [n/2]
incident red edges or |n/2] incident blue edges.

Let G; be the graph induced by the vertices connected to v; in G;_1 by edges of
the majority colour among those incident to v; in G;_;.
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Erd6s-Szekeres Upper Bound

Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4°

Idea: Neighbourhood Chasing.
We must find a monochromatic K; for each graph of size 4'.
Let Gy be the initial coloured K.

For i > 1 Let v; be an arbitrary vertex of Gi_1, it has either at least [n/2]
incident red edges or |n/2] incident blue edges.

Let G; be the graph induced by the vertices connected to v; in G;_1 by edges of
the majority colour among those incident to v; in G;_;.

Repeat the above two steps until i =2t — 1.
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Erd6s-Szekeres Upper Bound

Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4°

Idea: Neighbourhood Chasing.
We must find a monochromatic K; for each graph of size 4'.
Let Gy be the initial coloured K.

For i > 1 Let v; be an arbitrary vertex of Gi_1, it has either at least [n/2]
incident red edges or |n/2] incident blue edges.

Let G; be the graph induced by the vertices connected to v; in G;_1 by edges of
the majority colour among those incident to v; in G;_;.

Repeat the above two steps until i =2t — 1.

Colour v; red if G; is the vertices connected to v; in red, blue otherwise.
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Erd6s-Szekeres Upper Bound

Theorem (Erdés-Szekeres)]

The two colour diagonal Ramsey number satisfies R(t;2) < 4°

Idea: Neighbourhood Chasing.
We must find a monochromatic K; for each graph of size 4'.
Let Gy be the initial coloured K.

For i > 1 Let v; be an arbitrary vertex of Gi_1, it has either at least [n/2]
incident red edges or |n/2] incident blue edges.

Let G; be the graph induced by the vertices connected to v; in G;_1 by edges of
the majority colour among those incident to v; in G;_;.

Repeat the above two steps until i =2t — 1.
Colour v; red if G; is the vertices connected to v; in red, blue otherwise.

At least t of the v; share a colour and therefore form a monochromatic K:;.
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Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours
with almost identical proofs.
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Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours
with almost identical proofs.

This yields the following two bounds.

Theorem

The £ colour diagonal Ramsey number satisfies R(t; £) < £

Theorem

The ¢ colour diagonal Ramsey number satisfies R(t; ¢) > Ve

The second of these can be improved by an observation of Lefmann, that

R(t; 1 +£2) —-1< (R(t; 41) — 1)(R(t;£2) — 1)
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Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours
with almost identical proofs.

This yields the following two bounds.

Theorem

The £ colour diagonal Ramsey number satisfies R(t; £) < £

Theorem

The ¢ colour diagonal Ramsey number satisfies R(t; ¢) > Ve

The second of these can be improved by an observation of Lefmann, that
R(t; 1 +€2) —-1< (R(t; 41) — 1)(R(t;£2) — 1)

Blow up a mono-K;-free ¢1-colouring on R(t; ¢1) — 1 vertices such that each
vertex set has size R(t; 2) — 1 and colour these sets with remaining ¢» colours
without monochromatic K:.
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Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours
with almost identical proofs.

This yields the following two bounds.

Theorem

The £ colour diagonal Ramsey number satisfies R(t; £) < £

Theorem

The ¢ colour diagonal Ramsey number satisfies R(t; ¢) > Ve

The second of these can be improved by an observation of Lefmann, that
R(t; 1 +€2) —-1< (R(t; 41) — 1)(R(t;£2) — 1)

Blow up a mono-K;-free ¢1-colouring on R(t; ¢1) — 1 vertices such that each
vertex set has size R(t; 2) — 1 and colour these sets with remaining ¢» colours
without monochromatic K:.

Gives lower bound essentially R(t;¢) > 3%,

Matthew Coulson New Lower Bounds on Multicolour Diagonal Ramsey Numbers 6 /12



Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))]

For any prime g, R(t; g 4 1) > 2t/2¢3/8+(),
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Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))]

For any prime g, R(t; g 4 1) > 2t/2¢3/8+(),

This gives exponential improvements to the previous best lower bounds on
R(t;3) and R(t; 4).
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For any prime g, R(t; g 4 1) > 2t/2¢3/8+(),

This gives exponential improvements to the previous best lower bounds on
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Corollary
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Conlon-Ferber Result

Theorem (Conlon, Ferber (2020)))

For any prime g, R(t; g 4 1) > 2t/2¢3/8+(),

This gives exponential improvements to the previous best lower bounds on
R(t;3) and R(t; 4).

Corollary

R(t;3) > 27/8%°() and R(t;4) > 2t/233/8+e(t),

Applying Lefmann’s observation also gives the following improvement for any
number of colours.
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Conlon-Ferber Result

Theorem (Conlon, Ferber (2020)))

For any prime g, R(t; g 4 1) > 2t/2¢3/8+(),

This gives exponential improvements to the previous best lower bounds on
R(t;3) and R(t; 4).

Corollary

R(t; 3) > 27t/8+o(t) and R(t; 4) > 2:/233t/8+o(t)_

Applying Lefmann’s observation also gives the following improvement for any
number of colours.

Corollary

R(t; f) > 27Zt/24+o(t)(>> 3“/6).
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Conlon-Ferber Construction

Host Graph: Let g be prime, and suppose that t #0 mod gq.
Let V be the set of all vectors v € F} such that >;_, v/ = 0.
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Conlon-Ferber Construction

Host Graph: Let g be prime, and suppose that t #0 mod gq.
Let V be the set of all vectors v € F} such that >;_, v/ = 0.

Note that g"=2 < |V| < q" where the lower bound follows as each element of
F, may be written as the sum of two squares.
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Conlon-Ferber Construction

Host Graph: Let g be prime, and suppose that t #0 mod gq.
Let V be the set of all vectors v € F} such that >;_, v/ = 0.

Note that g"=2 < |V| < q" where the lower bound follows as each element of
F, may be written as the sum of two squares.

Colouring: We construct our colouring x as follows.
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Conlon-Ferber Construction

Host Graph: Let g be prime, and suppose that t #0 mod gq.
Let V be the set of all vectors v € F} such that >;_, v/ = 0.

Note that g"=2 < |V| < q" where the lower bound follows as each element of
F, may be written as the sum of two squares.

Colouring: We construct our colouring x as follows.

If uyv € Vand u-v =i wherei#0 mod g, then set x(u,v) =1.
Otherwise choose x(uv) uniformly at random from {q, g + 1} independently of
all other randomness.
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Conlon-Ferber Construction

Host Graph: Let g be prime, and suppose that t #0 mod gq.
Let V be the set of all vectors v € F} such that >;_, v/ = 0.

Note that g"=2 < |V| < q" where the lower bound follows as each element of
F, may be written as the sum of two squares.

Colouring: We construct our colouring x as follows.

If uyv € Vand u-v =i wherei#0 mod g, then set x(u,v) =1.
Otherwise choose x(uv) uniformly at random from {q, g + 1} independently of
all other randomness.

Embedding: Let f be a random injective map, f : [n] — V.
Define the colour of edge ij as x(f(/)f(})).
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Conlon-Ferber Construction

Host Graph: Let g be prime, and suppose that t #0 mod gq.
Let V be the set of all vectors v € F} such that >;_, v/ = 0.

Note that g"=2 < |V| < q" where the lower bound follows as each element of
F, may be written as the sum of two squares.

Colouring: We construct our colouring x as follows.

If uyv € Vand u-v =i wherei#0 mod g, then set x(u,v) =1.
Otherwise choose x(uv) uniformly at random from {q, g + 1} independently of
all other randomness.

Embedding: Let f be a random injective map, f : [n] — V.
Define the colour of edge ij as x(f(/)f(})).

That is, we take a random induced subgraph of V of size n and shall show it
contains no monochromatic clique of size t.
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Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for
any 1 <i<qg-—1.
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The first stage is to show that there is no monochromatic clique in colour i for
any 1 <i<qg-—1.

To do so we show the same is true in V by linear independence.
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The first stage is to show that there is no monochromatic clique in colour i for
any 1 <i<qg-—1.

To do so we show the same is true in V by linear independence.

Suppose vi,...,vs € V form a clique of colour i and suppose that
u=37, a5y =0.
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The first stage is to show that there is no monochromatic clique in colour i for
any 1 <i<qg-—1.

To do so we show the same is true in V by linear independence.

Suppose vi,...,vs € V form a clique of colour i and suppose that
u= Y5, =0,
Consider products u - v, we find that & = (au, ..., as) solves Ma = 0 where

M is the s x s matrix which is i everywhere but the diagonal where it is 0.
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Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for
any 1 <i<qg-—1.

To do so we show the same is true in V by linear independence.

Suppose vi,...,vs € V form a clique of colour i and suppose that
u= Y5, =0,
Consider products u - v, we find that & = (au, ..., as) solves Ma = 0 where

M is the s x s matrix which is i everywhere but the diagonal where it is 0.
This has eigenvalues i(s — 1) (multiplicity 1) and —i (multiplicity s — 1). So if

s# 1 mod g, M is non-singular over g and thus a =0so vi,...,vs is a
linearly independent set of vectors whereby s < t = dim(F%).
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Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for
any 1 <i<qg-—1.

To do so we show the same is true in V by linear independence.

Suppose vi,...,vs € V form a clique of colour i and suppose that
u= Y5, =0,
Consider products u - v, we find that & = (au, ..., as) solves Ma = 0 where

M is the s x s matrix which is i everywhere but the diagonal where it is 0.
This has eigenvalues i(s — 1) (multiplicity 1) and —i (multiplicity s — 1). So if
s# 1 mod g, M is non-singular over g and thus a =0so vi,...,vs is a

linearly independent set of vectors whereby s < t = dim(F%).

If s=1 mod g, the same argument with v;,..., vs_;1 yields s —1 < t and
s—1# tasthen t =0 mod g which we assumed was not the case.
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Conlon-Ferber Proof 2/3

Next, we deal with the colours g and g + 1.
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Say X is a potential clique if it has size t and u-v =0 mod q for all u,v € X.
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Conlon-Ferber Proof 2/3

Next, we deal with the colours g and g + 1.
Say X is a potential clique if it has size t and u-v =0 mod q for all u,v € X.

Let Mx be the matrix whose rows are the vectors of X, then Mx My = 0 from
which we may immediately deduce that r = rank(Mx) < t/2.
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Next, we deal with the colours g and g + 1.
Say X is a potential clique if it has size t and u-v =0 mod q for all u,v € X.

Let Mx be the matrix whose rows are the vectors of X, then Mx My = 0 from
which we may immediately deduce that r = rank(Mx) < t/2.

Counting Potential Cliques:
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Next, we deal with the colours g and g + 1.
Say X is a potential clique if it has size t and u-v =0 mod q for all u,v € X.

Let Mx be the matrix whose rows are the vectors of X, then Mx My = 0 from
which we may immediately deduce that r = rank(Mx) < t/2.

Counting Potential Cliques:
Assume we first pick r linearly independent vectors, then pick the remainder in
the span of these, gives at most

r—1 ) 32
( qt—l) qr(t—r) _ q2tr—T+
i=0

Potential cliques of rank r.

NI~
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Next, we deal with the colours g and g + 1.
Say X is a potential clique if it has size t and u-v =0 mod q for all u,v € X.

Let Mx be the matrix whose rows are the vectors of X, then Mx My = 0 from
which we may immediately deduce that r = rank(Mx) < t/2.

Counting Potential Cliques:
Assume we first pick r linearly independent vectors, then pick the remainder in
the span of these, gives at most

r—1 ) 32
( qt—/) qr(t—r) _ q2tr—T+
i=0

Potential cliques of rank r.

NI~

Expression above increasing in r for r < t/2 so max attained when r = t/2.
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Conlon-Ferber Proof 2/3

Next, we deal with the colours g and g + 1.
Say X is a potential clique if it has size t and u-v =0 mod q for all u,v € X.

Let Mx be the matrix whose rows are the vectors of X, then Mx My = 0 from
which we may immediately deduce that r = rank(Mx) < t/2.

Counting Potential Cliques:
Assume we first pick r linearly independent vectors, then pick the remainder in
the span of these, gives at most

r—1 ) 32
(H qt—/) qr(t—r) _ q2tr—T+
i=0

Potential cliques of rank r.

NI~

Expression above increasing in r for r < t/2 so max attained when r = t/2.

. 52 4 o2 .
So sum over all ranks gives that we have at most N; = g & "°(*") potential
cliques.
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Conlon-Ferber Proof 3/3

Monochromaticity Probability:
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Conlon-Ferber Proof 3/3

Monochromaticity Probability:
The probability that a given potential clique becomes monochromatic after

colouring with g and g+ 1 is 2 - 2-().
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Monochromaticity Probability:
The probability that a given potential clique becomes monochromatic after

colouring with g and g+ 1 is 2 - 2-().

Next pick a random subset of V where we take each element with probability
2n|V|*1 _ nq7t+0(1)'
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Conlon-Ferber Proof 3/3

Monochromaticity Probability:
The probability that a given potential clique becomes monochromatic after

colouring with g and g+ 1 is 2 - 2-().

Next pick a random subset of V where we take each element with probability
2n|V|*1 _ nq7t+0(1)'

The expected number of monochromatic potential cliques in this subset when
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Monochromaticity Probability:
The probability that a given potential clique becomes monochromatic after

colouring with g and g+ 1 is 2 - 2-().

Next pick a random subset of V where we take each element with probability
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we take n = 21/2¢3/8+°() is at most
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inequality is correct.)

The random subset we chose earlier also clearly has at least n unique elements
with probability at most 1/2.
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The random subset we chose earlier also clearly has at least n unique elements
with probability at most 1/2.

Thus by a union bound there is a colouring and choice of subset of V of size n
with no monochromatic potential clique in this subset.
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Monochromaticity Probability:
The probability that a given potential clique becomes monochromatic after

colouring with g and g+ 1 is 2 - 2-().

Next pick a random subset of V where we take each element with probability
2n|V‘71 _ nq7t+0(1)'

The expected number of monochromatic potential cliques in this subset when
we take n = 21/2¢3/8+°() is at most

2p 27 CIN, < g ol pip=t/2relE) gt /ol (2_t/2q_3t/8+°(t)”>t < %
(Where we have chosen the o(t) term in n appropriately so that the final
inequality is correct.)

The random subset we chose earlier also clearly has at least n unique elements
with probability at most 1/2.

Thus by a union bound there is a colouring and choice of subset of V of size n
with no monochromatic potential clique in this subset.

This completes the proof of the theorem.
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Theorem (Wigderson (2020)))
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For any fixed ¢ > 2, R(t; () > (2%7%) .
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Then by the results of Conlon and Ferber, Gy has no clique of size t and at
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to an arbitrary choice from the indicies of copies which include that edge.
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Wigderson's Improvement

Theorem (Wigderson (2020))]

t—o(t)
For any fixed £ > 2, R(t; () > (2%7%) ,

The idea here is adapting the Conlon-Ferber construction from the case g = 2.

If t is even define V C 5 to be the set of elements with even Hamming weight
i.e., an even number of 1's.

Go graph on Vp where uv is an edge iff u-v = 1.

Then by the results of Conlon and Ferber, Gy has no clique of size t and at

2 2
most 2% /8+°(t) independent sets of size at most t.

Randomly overlay m = ¢ — 2 blowups of Gp of size N colouring edges according
to an arbitrary choice from the indicies of copies which include that edge.

We colour uncoloured edges uniformly at random with 2 additional colours.

Arguing similarly to before we can deduce that provided N is sufficiently small,
there are no monochromatic copies of K.
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