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What is a Ramsey Number?

Question: Suppose we colour Kn with ` colours, what monochromatic
substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.

Ramsey number, R(k1, . . . , k`) is defined to be the minimum value of n such
that colouring the edges of Kn with colours c1, . . . , c` yields Kk1 in colour c1 or
Kk2 in colour c2 . . . .

Note - that R(k1, . . . , k`) exists for all `; k1, . . . , k` ∈ N is known as Ramsey’s
Theorem.

Diagonal Ramsey Numbers:

R(t; `) := R(t, t, . . . , t︸ ︷︷ ︸
` copies

)
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R(3;2)=6

The Ramsey number R(3; 2) = R(3, 3) i.e., the 2 colour Ramsey number for a
triangle is the smallest non-trivial Ramsey number.

We shall show that R(3; 2) = 6.

R(3; 2) > 5 R(3; 2) ≤ 6

One of the dashed lines is blue or all
are red.
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Erdős’ Lower Bound

The two colour diagonal Ramsey number satisfies R(t; 2) ≥
√

2
t

Theorem (Erdős)

Idea: Pick the colouring uniformly at random.

Colour edges red/blue with probability 1
2

independently of all others.

The probability that an arbitrary Kt is monochromatic is 2 · 2−(t
2).

There are
(
n
t

)
copies of Kt in Kn.

So the expected number of monochromatic copies of Kt is 2
(
n
t

)
2−(t

2).

Ignoring lower order terms, this is nt2− k2

2 which is less than 1 provided

n ≤
√

2
t
.

This allows us to deduce that there is at least one graph on
√

2
t

vertices with
no monochromatic Kt .
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Erdős-Szekeres Upper Bound

The two colour diagonal Ramsey number satisfies R(t; 2) ≤ 4t

Theorem (Erdős-Szekeres)

Idea: Neighbourhood Chasing.

We must find a monochromatic Kt for each graph of size 4t .

Let G0 be the initial coloured Kn.

For i ≥ 1 Let vi be an arbitrary vertex of Gi−1, it has either at least bn/2c
incident red edges or bn/2c incident blue edges.

Let Gi be the graph induced by the vertices connected to vi in Gi−1 by edges of
the majority colour among those incident to vi in Gi−1.

Repeat the above two steps until i = 2t − 1.

Colour vi red if Gi is the vertices connected to vi in red, blue otherwise.

At least t of the vi share a colour and therefore form a monochromatic Kt .
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Theorem (Erdős-Szekeres)

Idea: Neighbourhood Chasing.

We must find a monochromatic Kt for each graph of size 4t .

Let G0 be the initial coloured Kn.

For i ≥ 1 Let vi be an arbitrary vertex of Gi−1, it has either at least bn/2c
incident red edges or bn/2c incident blue edges.

Let Gi be the graph induced by the vertices connected to vi in Gi−1 by edges of
the majority colour among those incident to vi in Gi−1.

Repeat the above two steps until i = 2t − 1.

Colour vi red if Gi is the vertices connected to vi in red, blue otherwise.

At least t of the vi share a colour and therefore form a monochromatic Kt .

Matthew Coulson New Lower Bounds on Multicolour Diagonal Ramsey Numbers 5 / 12
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Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours
with almost identical proofs.

This yields the following two bounds.

The ` colour diagonal Ramsey number satisfies R(t; `) ≤ ``t
Theorem

The ` colour diagonal Ramsey number satisfies R(t; `) ≥
√
`
t

Theorem

The second of these can be improved by an observation of Lefmann, that

R(t; `1 + `2)− 1 ≤ (R(t; `1)− 1)(R(t; `2)− 1)

Blow up a mono-Kt-free `1-colouring on R(t; `1)− 1 vertices such that each
vertex set has size R(t; `2)− 1 and colour these sets with remaining `2 colours
without monochromatic Kt .

Gives lower bound essentially R(t; `) ≥ 3
`t
6 .
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Conlon-Ferber Result

For any prime q, R(t; q + 1) ≥ 2t/2q3t/8+o(t).

Theorem (Conlon, Ferber (2020))

This gives exponential improvements to the previous best lower bounds on
R(t; 3) and R(t; 4).

R(t; 3) ≥ 27t/8+o(t) and R(t; 4) ≥ 2t/233t/8+o(t).

Corollary

Applying Lefmann’s observation also gives the following improvement for any
number of colours.

R(t; `) ≥ 27`t/24+o(t)(� 3`t/6).

Corollary
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Conlon-Ferber Construction

Host Graph: Let q be prime, and suppose that t 6= 0 mod q.
Let V be the set of all vectors v ∈ Ft

q such that
∑t

i=1 v
2
i = 0.

Note that qt−2 ≤ |V | ≤ qt where the lower bound follows as each element of
Fq may be written as the sum of two squares.

Colouring: We construct our colouring χ as follows.

If u, v ∈ V and u · v = i where i 6= 0 mod q, then set χ(u, v) = i .
Otherwise choose χ(uv) uniformly at random from {q, q + 1} independently of
all other randomness.

Embedding: Let f be a random injective map, f : [n]→ V .
Define the colour of edge ij as χ(f (i)f (j)).

That is, we take a random induced subgraph of V of size n and shall show it
contains no monochromatic clique of size t.
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Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for
any 1 ≤ i ≤ q − 1.

To do so we show the same is true in V by linear independence.

Suppose v1, . . . , vs ∈ V form a clique of colour i and suppose that
u =

∑s
j=1 αjvj = 0.

Consider products u · vk , we find that α = (α1, . . . , αs) solves Mα = 0 where
M is the s × s matrix which is i everywhere but the diagonal where it is 0.

This has eigenvalues i(s − 1) (multiplicity 1) and −i (multiplicity s − 1). So if
s 6= 1 mod q, M is non-singular over Fq and thus α = 0 so v1, . . . , vs is a
linearly independent set of vectors whereby s ≤ t = dim(Ft

q).

If s = 1 mod q, the same argument with v1, . . . , vs−1 yields s − 1 ≤ t and
s − 1 6= t as then t = 0 mod q which we assumed was not the case.
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Conlon-Ferber Proof 2/3

Next, we deal with the colours q and q + 1.

Say X is a potential clique if it has size t and u · v = 0 mod q for all u, v ∈ X .

Let MX be the matrix whose rows are the vectors of X , then MXM
T
X = 0 from

which we may immediately deduce that r = rank(MX ) ≤ t/2.

Counting Potential Cliques:
Assume we first pick r linearly independent vectors, then pick the remainder in
the span of these, gives at most(

r−1∏
i=0

qt−i

)
qr(t−r) = q2tr− 3r2

2
+ r

2

Potential cliques of rank r .

Expression above increasing in r for r ≤ t/2 so max attained when r = t/2.

So sum over all ranks gives that we have at most Nt = q
5t2

8
+o(t2) potential

cliques.
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Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after

colouring with q and q + 1 is 2 · 2−(t
2).

Next pick a random subset of V where we take each element with probability
2n|V |−1 = nq−t+O(1).

The expected number of monochromatic potential cliques in this subset when
we take n = 2t/2q3t/8+o(t) is at most

2pt2−(t
2)Nt ≤ q−t2+o(t2)nt2−t2/2+o(t2)q5t2/8+o(t2) =

(
2−t/2q−3t/8+o(t)n

)t
<

1

2
.

(Where we have chosen the o(t) term in n appropriately so that the final
inequality is correct.)

The random subset we chose earlier also clearly has at least n unique elements
with probability at most 1/2.

Thus by a union bound there is a colouring and choice of subset of V of size n
with no monochromatic potential clique in this subset.

This completes the proof of the theorem.
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with probability at most 1/2.

Thus by a union bound there is a colouring and choice of subset of V of size n
with no monochromatic potential clique in this subset.

This completes the proof of the theorem.
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Wigderson’s Improvement

For any fixed ` ≥ 2, R(t; `) ≥
(

2
3`
8
− 1

4

)t−o(t)

.

Theorem (Wigderson (2020))

The idea here is adapting the Conlon-Ferber construction from the case q = 2.

If t is even define V ⊆ Ft
2 to be the set of elements with even Hamming weight

i.e., an even number of 1’s.

G0 graph on V0 where uv is an edge iff u · v = 1.

Then by the results of Conlon and Ferber, G0 has no clique of size t and at

most 25t2/8+o(t2) independent sets of size at most t.

Randomly overlay m = `− 2 blowups of G0 of size N colouring edges according
to an arbitrary choice from the indicies of copies which include that edge.

We colour uncoloured edges uniformly at random with 2 additional colours.

Arguing similarly to before we can deduce that provided N is sufficiently small,
there are no monochromatic copies of Kt .
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